Unfortunately no one can be told what FluxBB is - you have to see it for yourself.
You are not logged in.
January 5.
Education / Certification, Excel / Power BI by Ariaa Reeds Personal and professional growth for an individual depends on the investment one puts in continued education.
Continued education is necessary for leadership positions and industries such as human resources, manufacturing, marketing, operations, information technology, etc.
Staying updated with the relevant profession is essential to move up the career ladder, and in certain cases, it is essential to save the job. It showcases your knowledge, education, and relevant skills necessary to perform the job for the current and future employers.
‘Career growth’ is not defined by the higher salaries but the effort made to earn those ‘higher salaries.’ Higher salaries do not mean the appreciable yearly increment in a well- established firm but earning the competent salaries by staying with the trend.
We will discuss the learning opportunities for the most in-demand data science professional s here. Data Science certifications for the Newbies.
When you understand the basic principles of data science, it would help you use the tools productively.
If you are looking to develop data analytic skills, then you can opt for certain free online courses.
It helps you learn the basics of data science at your own pace and get acquainted with the field knowledge . Most of the data science certification program or courses mentioned below are available free online.
Though, a few may charge for gaining the certification once you finish the course.
Whatever the case may be, you get destined to gain knowledge in the field which would be a good kick start for your career. To mention a few, they are: Coursera – Data Science Specialization.
Edx – Data Science Essentials .
Udacity – Introduction to Machine Learning.
IBM – Data Science Fundamentals.
Data Quest – Become a Data Scientist.
Kdnuggets – Data Mining Course.
Most of these courses are available free online and are self-paced.
You can get the basic hold of the subject and afterward, you may go for premium courses to advance learning or earn certifications. Data Science Certifications for Professionals.
To stay competitive in the industry, you should get certified from industry-renowned global certification bodies.
Mention not to say, there is a lot of difference between courses and certifications.
Though a course gives you the relevant subject knowledge or skill, a certification program is vendor-neutral and increases your employability factor.
It equips you with the latest tools and techniques and assures your prospective recruiter that you are their shot to hire. To mention a few of the best data science certifications, they are: SAS Academy for Data Science – SAS Certified Data Scientist.
Data Science Council of America (DASCA) – Senior Data Scientist.
Google- Google Certified Professional Data Engineer.
Dell EMC Education Services – Data Science Associate v2 (DCS-DS) certification and the Data Science Specialist (DCS-DS) certification.
These certifications equip you with the latest tools and techniques and assure your prospective recruiter that you are their shot to hire. Industry-specific Certifications.
Industry-specific certifications, as the name itself indicates, these are specific to the industries.
These certifications provide you specific training with use cases in the industry you are interested in or working.
It helps you solve industrial problems at a faster rate with deep insight. To mention a few: Agriculture Industry- Certificate in Agricultural Data Science.
Fintech industry- Certification course for financial professions.
Business Analytics – Harvard Business School’s Certification Program.
The data collected by an education department is entirely different from the e-commerce industry.
These certifications give you a clear-cut idea about data mining and deriving insights by using the right and specific tools as required.
Cross-functional Certifications.
A data science job is an end-to-end job.
Data insights are used to improve business productivity, marketing strategy, and business value.
So, it is good to know other fields also like business analytics, marketing, manufacturing.
Though these certifications do not directly deal with the subject, it structures your knowledge base in the industry.
It gives a holistic approach to your work and widens your organizational value. To mention a few, they are: Project Management Institute- Project Management Professional Certification.
Springboard – Certified UX Designer.
Business Analyst Professional Program – Institute of Business Analyst Training.
These certifications give you complete knowledge of the system and help you derive data with a holistic approach and gain business benefits. Wrapping Up:.
In addition to certifications, it is necessary to complete a few independent projects to showcase your skills.
It increases practical knowledge and provides hand-on-experience in technology.
Ultimately, the knowledge we impart for the organization that can increase value matters. So, rather than choosing certifications or learnings merely for job or salary purposes, it is recommended to choose for learning purposes.
When you develop interest and dedication for the subject, it helps you go a long way in the career path. Be strategic in your learnings and increase the knowledge base.
https://data-science-blog.com/wp-content/uploads/2019/12/image1.jpg 467 700 Ariaa Reeds Ariaa Reeds 2020-01-05 08:56:13 2020-01-06 10:26:50 Data Science Certifications to Excel in Your Career: A Holistic Approach Self Service Data Preparation mit Microsoft Excel.
January 26, 20181 Comment in , , Data Science Hack, Excel / Power BI, , , Tool Introduction, Tutorial by Sven Galonska Get & Transform (vormals Power Query), eine kurze Einführung.
Unter Data Preparation versteht man sinngemäß einen Prozeß der Vorbereitung / Aufbereitung von Rohdaten aus meistens unterschiedlichen Datenquellen und -formaten, verbunden mit dem Ziel, diese effektiv für verschiedene Geschäftszwecke / Analysen (Business Fragen) weiterverwenden/bereitstellen zu können.
integriert (Datenkonsistenz, referentielle Integrität), sowie zugeordnet (mapping; Quell- zu Zieldaten) werden.
Unter Datenqualität soll hier die Beschaffenheit / Geeignetheit von Daten verstanden werden, um konkrete Fragestestellungen beantworten zu können (fitness for use): Kriterien Datenqualität Eindeutigkeit.
Vollständigkeit.
Widerspruchsfreiheit / Konsistenz.
Aktualität.
Genauigkeit.
Verfügbarkeit.
Datenqualität bestimmt im Wesentlichen die weitere zielgerichtete Verwendung der Daten in Analysen (Modelle) und Berichten (Reporting).
Eine Kennzahl ist gegenüber der Datenqualität immer blind, ihre Aussagekraft (Validität) hängt -neben der Definition – in sehr starkem Maße davon ab: Gütekriterien von Kennzahlen Objektivität := ist die Interpretation unabhängig vom Beobachter / Verwender?.
Reliabilität := kann das Ergebnis unter sonst gleichen Bedingungen reproduziert werden ?.
Validität := sagt die Kennzahl das aus, was sie vorgibt, auszusagen ?.
Business Fragen entstehen naturgemäß in den Fachbereichen.
Daher ist es nur folgerichtig, Data Preparation als einen ersten Analyseschritt innerhalb des Fachbereichs anzusiedeln (Self Service Data Preparation).
Dadurch erhält der Fachbereich einen Teil seiner Autonomie zurück.
Welche Teilmenge der Daten relevant für Fragestellungen ist, kann nur der Fachbereich beurteilen; der Anforderer von entscheidungsrelevanten Informationen sollte idealerweiseTeil der Entstehung wertiger Daten sein, das fördert zum einen die Akzeptanz des Ergebnisses, zum anderen wirkt es einem „not-invented-here“ Syndrom frühzeitig entgegen.
Im Folgenden wird anhand 4 Schritten skizziert, wie Microsoft Excel bei dem Thema (Self Service) Data Preparation vor allem den Fachbereich unterstützen kann.
Sie finden die hierfür verwendete Funktionalität (Get & Transform) in Excel 2016 unter: Reiter Daten -> Abrufen und Transformieren.
Dem interessierten Leser werden im Text vertiefende Informationen über links zu einzelnen typischen Aufgabenstellungen und Lösungswegen angeboten.
1 Einlesen.
Datenquellen anbinden (externe, interne) Dank der neuen Funktionsgruppe „Abrufen und Transformieren“ ist es in Microsoft Excel möglich, .
Zusätzlich können natürlich auch Tabellen der aktiven / offenen Excel Arbeitsmappe als Datenquelle dienen (interne Datenquellen).
Praxisbeispiele: Anbindung mehrerer Dateien, welche in einem Ordner bereitgestellt werden Anbindung von Webinhalten 2 Transformieren.
Struktur) Datentypen (Text, Zahl) können anschließend je Arbeitsmappenabfrage und Spalte(n) geändert werden.
Dies ist zB immer dann notwendig, .
Gleicher Datentyp (Primär- und Fremdschlüssel) in beiden Tabellen ist hier notwendige Voraussetzung.
Des Weiteren wird in dieser Phase typischerweise festgelegt, welche Zeile der Abfrage die Spaltenbeschriftungen enthält.
Praxisbeispiele: Fehlerbehandlung Leere Zellen auffüllen Umgang mit wechselnden Spaltenbeschriftungen 3 Zusammenführen / Anreichern.
Daten zusammenführen (SVERWEIS mal anders) Um unterschiedliche Tabellen / Abfragen über gemeinsame Schlüsselspalten zusammenzuführen, stellt der Excel Abfrage Editor eine Reihe von JOIN-Operatoren zur Verfügung, welche ohne SQL-Kenntnisse nur durch Anklicken ausgewählt werden können.
Praxisbeispiele JOIN als Alternative zu Excel Formel SVERWEIS() Daten anreichern (benutzerdefinierte Spalte anfügen) Bei Bedarf können weitere Daten, welche sich nicht in der originären Struktur der Datenquelle befinden, abgeleitet werden.
Die Sprache Language M stellt einen umfangreichen Katalog an Funktionen zur Verfügung.
Wie Sie eine Übersicht über die verfügbaren Funktionen erhalten können erfahren Sie hier.
Praxisbeispiele Geschäftsjahr aus Datum ableiten Extraktion Textteil aus Text (Trunkation) Mehrfache Fallunterscheidung, Datenbereinigung /-harmonisierung 4 Laden.
eine Verbindung und / oder in das Power Pivot Datemodell zur weiteren Bearbeitung (Modellierung, Kennzahlenbildung) geladen werden.
Praxisbeispiele Datenverbindung erstellen https://data-science-blog.com/wp-content/uploads/2015/06/excel-poiver-pivot1-1-1.png 413 946 Sven Galonska Sven Galonska 2018-01-26 16:15:45 2018-01-26 16:15:45 Self Service Data Preparation mit Microsoft Excel.
Excel / Power BI.
Offline